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In automated manufacturing systems such as flexible manufac-
turing systems (FMSs), one of the most important issues is the
detection of tool wear during the cutting process. This paper
presents a hybrid learning method to map the relationship
between the features of cutting vibration and the tool wear
condition. The experimental results show that it can be used
effectively to monitor the tool wear in drilling. First, a neural
network model with fuzzy logic (FNN), responding to learning
algorithms, is presented. It has many advantageous features,
compared to a backpropagation neural network, such as less
computation. Secondly, the experimental results show that the
frequency distribution of vibration changes as the tool wears,
so the r.m.s. of the different frequency bands measured indi-
cates the tool wear condition. Finally, FNN is used to describe
the relationship between the characteristics of vibration and
the tool wear condition. The experimental results demonstrate
the feasibility of using vibration signals to monitor the drill
wear condition.
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1. Introduction

The development of an effective means to monitor the wear
condition of cutting tools is one of the most important issues
in the automation of the cutting process. The consequences of
non-detection of tool failures may result in a poor quality
product and damage to the workpiece or machine [1–5]. This
paper focuses on monitoring of tool wear in drilling. Drilling
is an important material removal process and it is therefore
necessary to search for an effective way of monitoring drill
wear.

The alternating direction of cutting force leads to vibrations
of the machine structure. These vibrations change owing to
the tool wear conditions. Despite the relatively harsh environ-
ment in the proximity of the cutting zone, the vibrations can

Correspondence and offprint requests to: Dr Xiaoli Li, Department of
Manufacturing Engineering, City University of Hong Kong, 83 Tat
Chee Avenue, Kowloon, Hong Kong. E-mail: mel50001Kcityu.edu.hk

be measured conveniently by accelerometers at a comparably
affordable price.

Neural networks have been used for the classification of
various signals for a long time. The most commonly used
neural network in manufacturing related research uses a back-
propagation (BP) algorithm. However, a BP requires a long
learning time which limits its applicability. Hence, a neural
network with fuzzy inference is used instead because of its
ability to learn fast.

This paper proposes a new drill condition monitoring method
based on a fuzzy neural network. Spectral analysis of the
vibration signal is used to generate a set of indices for monitor-
ing. The relationship between the tool wear condition and these
indices is described by a fuzzy neural network. The results
show that the approach is feasible.

2. Fuzzy Neural Network

2.1 Combination of Fuzzy System and Neural Network

Neural networks are organised in layers, each consisting of
neurons or processing elements that are interconnected. There
are a number of learning methods for training neural nets, but
the back propagation (back-prop) paradigm has emerged as the
most popular training mechanism. The back-prop method works
by measuring the difference between output and the observed
output value. The values at the output layer are propagated to
the previous layers and used for adjusting the connection
weights. However, there are potential drawbacks:

1. No clear guidelines on how to design neural nets.
2. The accuracy of results relies heavily on the size of the

training set.
3. The logic behind the estimation is hard to convey to the

user.
4. Long learning time.
5. Part convergence.

In order to overcome these drawbacks, a hybrid model of
the neural network and fuzzy logic is presented. Although
there are many possible combinations of the two systems, the
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Fig. 1.Combination types of NN and FS.

four combinations shown in Fig. 1 have been applied to
actual products.

Figure 1(a) shows the case where one piece of equipment
uses the two systems for different purposes without mutual
cooperation. The model in Fig. 1(b) uses the neural network
(NN) to optimise the parameters of the fuzzy system (FS) by
minimising the error between the output of the FS and the
given specification. Figure 1(c) shows a model where the
output of an FS is corrected by the output of an NN to
increase the precision the final system output. Figure 1(d)
shows a cascade combination of an FS and an NN where the
output of the FS or NN becomes the input of another NN or
FS. Figures 1(b) and 1(c) models refer to a combination model
with net learning and a combination model with an equal
structure, respectively. These are described in detail (see Fig.
2). Figure 2(a) shows that the total system is decribed by
means of a fuzzy system, but the membership of the fuzzy
system is produced and adjusted by the learning of the neural
network. The model in Fig. 2(b) shows that a fuzzy system
can be described by a neural network, the max (~) and min
(`) operators for fuzzy inference are used to map the relation-
ship between input and output of the FNN. The neural network
is not a black box. The inference processing of the fuzzy
system is responded to by the neural network. In the paper, a
new neural network with fuzzy inference is presented. It has
some features:

Fig. 2. (a) Combination model with net learning. (b) Combination
model with equal structure.

1. Higher learning speed.
2. Better flexibility.
3. Convergence.

2.2 FNN Net Topology and Learning Algorithms

Suppose the input pairs are (x1, x2, %, xn) and the output pairs
are (y1, y2, %, ym), and yj is determined byxi and wij. It is
defined as follows:

yj = max(min(xi, wij)) (1)

where wij are the elements of the weight matrixW. The FNN
net topology is shown in Fig. 3. Suppose the neural network
has no hidden layer, ifX = (x1, x2, %, xn), Y = (y1, y2, %,
ym) and W = (wij), Y is obtained such that

Y = X i W (2)

and

yj = max(min(xi, wij)) (i = 1, 2,%, n; j = 1, 2, %, m)

where X P [0,1], Y P [0,1]. Let X and Y be the input data
(x1, x2, %, xi, %, xn) and the desired output value (y1, y2, %,
yj, %, ym), respectively. The set of the corresponding elements
of the weight matrix is (w11, w12, %, wij, %, wnm). The idea
of back propagation is used to find the errors of node outputs
in each layer. Without any loss of generality, the detailed
learning processes of single layers for clarity are derived as
follows. The derivation can be extended easily to the multiple-
output case. The goal of the proposed learning algorithm is to
minimise the least-squares error function

E =
1
2

(Tj − Oj)2 (3)

where Oj = max(min(xi, wij)), Tj is the desired FNN output
value,Oj is the actual value, and the least-squares error between
them is E. The general parameter learning rule used is

­E
­wij

=
­E
­Oj

·
­Oj

­wij

(4)

where

­Oj

­wij

=
­~(xi, wij))
­`(xs, wsj)

­`(xs, wsj)
­wsj

(5)

In Eq. (5) “~” means max and “̀ ” means min. Assuming
­Oj/­wij = D and−­E/­Oj = dj, the changes of the weight will
be obtained from ad-rule as follows:

Fig. 3.FNN net topology.
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Fig. 4. Schematic diagram of the experimental set-up.

Dwij = mdjD (6)

where m is the learning rate,mP [0,1]. Detailed learning
algorithms are shown in [6].

3. Experimental Set-up and Results

3.1 Experimental Set-up

Drilling tests were performed on a machining centre Makino-
FNC74-A20. A schematic diagram of the experimental set-up
is shown in Fig. 4. During the experiments, the vibration signal
is measured by means of an accelerometer mounted on the
workpiece. The vibration signal is first passed through charge
amplifiers (PS-506) and low-pass filters (4 kHz) and is then
sampled by an A/D (wave form analyser AF-550A, sample
frequency 25 kHz), then is input to a personal computer
(AST/386). Drilling experiments were carried out on the
machineMC using a 3–9 mm diameter high-speed-steel twist
drill and a 40Cr workpiece. All the experiments were carried
out under dry conditions without coolant, but the method is
also suitable for use with a coolant.

3.2 Tool States

The tool wear condition was divided into five states, i.e. initial
wear, normal wear, acceptable wear, severe wear and failure
[7,8]. Based on the flank wear of the tool, these conditions
are summarised in Table 1.

The fuzzy membership functions of drilling conditions based
on experimental data and the observed system behaviour are set
for output indices of the FNN, which are the fuzzy membership
functions of the drilling condition and are shown in Fig. 5.
The reason for choosing a trapezoid shape is that it is difficult
to quantify what exact percentage of the tool condition corre-

Table 1.Tool condition classification.

Tool condition Flank wear

Initial wear 0 , wear , 0.1 mm
Normal wear 0.05, wear , 0.3 mm
Acceptable wear 0.25, wear , 0.5 mm
Severe wear 0.45, wear , 0.6 mm
Failure - - - - -

Fig. 5.Fuzzy membership function of drilling conditions.

sponds to a certain linguistic variable. In order to improve the
training speed of the FNN, the tool wear conditions are coded
as follows: initial (1,0,0,0,0); normal (0,1,0,0,0); acceptable
(0,0,1,0,0); severe (0,0,0,1,0); and failure (0,0,0,0,1). If the tool
condition is normal, the output values of the FNN are
(0,1,0,0,0).

3.3 Monitoring Indices

Based on the cutting vibration signal, the mean value of each
frequency band was used to describe the characteristics of
different tool conditions, as shown in Fig. 6. The indices
selected are summarised as follows:

x1 = the r.m.s. of the signal in the frequency band
[0,300] Hz

x2 = the r.m.s. of the signal in the frequency band
[300,600] Hz

x3 = the r.m.s. of the signal in the frequency band
[600,1000] Hz

x4 = the r.m.s. of the signal in the frequency band
[1000,1500] Hz

x5 = the r.m.s. of the signal in the frequency band
[1500,2500] Hz

The above parameters are the input values of the FNN.

3.4 Experimental Results

A total of 30 cutting tests were conducted under various cutting
conditions. Twenty samples were randomly picked as learning
samples. The samples remaining were used as the test samples
in the classification phase. The final tool condition decision is
made according to:

J = max(yi) (i = 1,2,3,4,5) (7)

whereyi is the output value of the trained FNN. The maximum
value of theyi, namely J, is converted to 1, and the others
are converted to 0. For instance, ifJ = y2 = 0.8, the output
of FNN is (0,1,0,0,0), the tool belongs to the normal wear
condition. The test results are shown in Table 2. It shows that
the results meet the needs of the application.

4. Conclusions

In a manufacturing system, machining efficiency is greatly
influenced by the tool condition in the cutting process. One of
the most complex problems in tool condition monitoring is
that of describing, with sufficient accuracy, the relationship
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Fig. 6. Vibration spectral (FFT). Cutting speed: 380 rev min−1; feed: 20 mm min−1; work material: 40Cr steel; tool: high-speed-steel twist.

Table 2.Test results.

Tool condition Recognition rate (%)

Air cutting 100
Initial 52
Normal 82
Acceptable 70
Severe 68
Failure 100

between the tool wear condition and the features of the
measured signal under a given cutting condition. In this paper,
a new FNN is introduced for tool condition monitoring in
machining. The following conclusions can be drawn from
the investigation:

1. The fuzzy relationship between the tool condition and
monitoring indices may be identified by using a fuzzy
neural network

2. The training of the FNN is faster than for a back propa-
gation-type neural network (BP).

3. The r.m.s. of the frequency bands increases as the flank
wear increases.

It has also been shown that the coupling between the tool wear
condition and the vibration signal being measured is adequate.
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